Quantum Dot Spectrometer

Completed Technology Project (2016 - 2017)

Project Introduction

The main objectives of this CIF are to develop a novel, ultra-compact instrument concept using QDS, qualify QDS through thermal vacuum and vibration tests, and then demonstrate a 20x20 array prototype between the range of 480 to 680 nm. However, the wavelength range can be expanded with more pixels, or a completely different range within 300 to 3000 nm can be achieved by selecting an appropriate set of QDs and detector. The end product of this task will be a preliminary prototype QDS integrated with a detector array, and spectral images produced by the system. As a follow-on effort the PI and team intend to apply to the Advanced Component Technologies program in 2017 to complete the proof-of-concept of the technology and reach a TRL of 3. After that, the team will apply to the Instrument Incubator Program to develop a breadboard and test it in relevant environment, reaching a TRL of 5. At that point, the QDS instrument will be ready to be proposed to Earth Science mission opportunities.

Anticipated Benefits

This second-year effort continues development of a novel, ultra-compact, low mass, and low-cost multispectral imager based on an innovative quantum dot array (QDA) concept. This innovative QDA, based on a recent patent by MIT, acts as an absorptive filter and replaces prisms, gratings, interference filters and other optical components currently used in spectrometers. The advantages of such a Quantum Dot Spectrometer (QDS) make it a suitable instrument for small satellite missions in Earth Science, Heliophysics and Planetary Science.

Primary U.S. Work Locations and Key Partners

Quantum Dot Spectrometer

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)	2	
Technology Areas	2	
Target Destinations	2	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Center Innovation Fund: GSFC CIF

Center Innovation Fund: GSFC CIF

Quantum Dot Spectrometer

Completed Technology Project (2016 - 2017)

Organizations Performing Work	Role	Туре	Location
Goddard Space Flight Center(GSFC)	Lead Organization	NASA Center	Greenbelt, Maryland
Massachusetts Institute of Technology(MIT)	Supporting Organization	Academia	Cambridge, Massachusetts

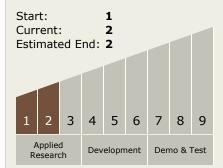
Primary U.S. Work Locations

Maryland

Project Management

Program Director:

Michael R Lapointe


Program Manager:

Peter M Hughes

Principal Investigator:

Mahmooda Sultana

Technology Maturity (TRL)

Technology Areas

Primary:

- TX08 Sensors and Instruments
 - ☐ TX08.1 Remote Sensing Instruments/Sensors
 - ☐ TX08.1.1 Detectors and Focal Planes

Target Destinations

Earth, Others Inside the Solar System

